navis 1.4.0
  • Install
  • Quickstart
  • Tutorials
  • API
  • Changelog
  • Github
  • Ecosystem
  • Site
    • Page
        • navis.VoxelNeuron
          • VoxelNeuron
            • VoxelNeuron.__init__()

    navis.VoxelNeuron¶

    class navis.VoxelNeuron(x, offset=None, cache=True, units=None, **metadata)[source]¶

    Neuron represented as voxels.

    Parameters:
    • x (ndarray) –

      Data to construct neuron from:
      • a 2D (N, 3) array of voxel positions (x, y, z)

      • a 2D (N, 4) array of voxel positions + values (x, y, z, value)

      • a 3D (N, M, J) array representing the voxel grid

    • offset ((3, ) array, optional) – An (optional) offset in voxels. This is useful to keep the voxel grid small while still maintaining correct positioning e.g. for plotting.

    • cache (bool) – Whether to cache different representations (i.e. grid and voxels) of the data. Set to False to save some memory.

    • units (str | pint.Units | pint.Quantity) – Units (scales) for voxels. Defaults to 1 (dimensionless). Strings must be parsable by pint: e.g. “nm”, “um”, “micrometer” or “8 nanometers”.

    • **metadata – Any additional data to attach to neuron.

    Initialize Voxel Neuron.

    __init__(x, offset=None, cache=True, units=None, **metadata)[source]¶

    Initialize Voxel Neuron.

    Methods

    __init__(x[, offset, cache, units])

    Initialize Voxel Neuron.

    convert_units(to[, inplace])

    Convert coordinates to different unit.

    copy()

    Return a copy of the neuron.

    map_units(units[, on_error])

    Convert units to match neuron space.

    max()

    Maximum value (excludes zeros).

    memory_usage([deep, estimate])

    Return estimated memory usage of this neuron.

    min()

    Minimum value (excludes zeros).

    plot2d(**kwargs)

    Plot neuron using navis.plot2d().

    plot3d(**kwargs)

    Plot neuron using navis.plot3d().

    strip([inplace])

    Strip empty voxels (leading/trailing planes of zeros).

    summary([add_props])

    Get a summary of this neuron.

    threshold(threshold[, inplace])

    Drop below-threshold voxels.

    Attributes

    CORE_DATA

    Core data table(s) used to calculate hash

    EQ_ATTRIBUTES

    Attributes to be used when comparing two neurons.

    SUMMARY_PROPS

    Attributes used for neuron summary

    TEMP_ATTR

    Temporary attributes that need clearing when neuron data changes

    bbox

    Bounding box (includes connectors) in units.

    connectors

    Connector table.

    core_md5

    MD5 checksum of core data.

    datatables

    Names of all DataFrames attached to this neuron.

    dtype

    Data type of voxel values.

    extents

    Extents of neuron in x/y/z direction (includes connectors).

    grid

    Voxel grid representation.

    id

    Hashable ID.

    is_isometric

    Test if neuron is isometric.

    is_locked

    Test if neuron is locked.

    is_stale

    Test if temporary attributes might be outdated.

    label

    Label (e.g.

    name

    Neuron name.

    offset

    Offset (in voxels).

    postsynapses

    Table with postsynapses.

    presynapses

    Table with presynapses.

    shape

    Shape of voxel grid.

    type

    Neuron type.

    units

    Units for coordinate space.

    units_xyz

    Units for coordinate space.

    values

    (N, ) array of values for each voxel

    volume

    Volume of neuron.

    voxels

    (N, 3) array of x/y/z voxels locations

    soma

    Back to top

    Source

    © Copyright 2018, Philipp Schlegel.
    Created using Sphinx 5.3.0.