navis 1.4.0
  • Install
  • Quickstart
  • Tutorials
  • API
  • Changelog
  • Github
  • Ecosystem
  • Site
    • Page
        • navis.sholl_analysis
          • sholl_analysis()

    navis.sholl_analysis¶

    navis.sholl_analysis(x, radii=10, center='centermass', geodesic=False)[source]¶

    Run Sholl analysis for given neuron(s).

    Parameters:
    • x (TreeNeuron | MeshNeuron | NeuronList) – Neuron to analyze. If MeshNeuron, will generate and use a skeleton representation.

    • radii (int | list-like) – If integer, will produce N evenly space radii covering the distance between the center and the most distal node. Alternatively, you can also provide a list of radii to check. If x is multiple neurons, must provide a list of radii!

    • center ("centermass" | "root" | "soma" | int | list-like) –

      The center to use for Sholl analysis:
      • ”centermass” (default) uses the mean across nodes positions

      • ”root” uses the current root of the skeleton

      • ”soma” uses the neuron’s soma (will raise error if no soma)

      • int is interpreted as a node ID

      • (3, ) list-like is interpreted as x/y/z coordinate

    • geodesic (bool) – If True, will use geodesic (along-the-arbor) instead of Euclidean distances. This does not work if center is an x/y/z coordinate.

    • parallel (bool) – If True and input is NeuronList, use parallel processing. Requires pathos.

    • n_cores (int, optional) – Numbers of cores to use if parallel=True. Defaults to half the available cores.

    • progress (bool) – Whether to show a progress bar. Overruled by navis.set_pbars.

    • omit_failures (bool) – If True will omit failures instead of raising an exception. Ignored if input is single neuron.

    Returns:

    results – Results contain, for each spherical bin, the number of intersections, cable length and number of branch points.

    Return type:

    pd.DataFrame

    References

    See the Wikipedia entry for a brief explanation.

    Examples

    >>> import navis
    >>> n = navis.example_neurons(1, kind='skeleton')
    >>> # Sholl analysis
    >>> sha = navis.sholl_analysis(n, radii=100, center='root')
    >>> # Plot distributions
    >>> ax = sha.plot()                                         
    >>> # Sholl analysis but using geodesic distance
    >>> sha = navis.sholl_analysis(n, radii=100, center='root', geodesic=True)
    

    Back to top

    Source

    © Copyright 2018, Philipp Schlegel.
    Created using Sphinx 5.3.0.