navis 1.4.0
  • Install
  • Quickstart
  • Tutorials
  • API
  • Changelog
  • Github
  • Ecosystem
  • Site
    • Page
        • navis.interfaces.r.nblast_allbyall
          • nblast_allbyall()

    navis.interfaces.r.nblast_allbyall¶

    navis.interfaces.r.nblast_allbyall(x, normalized=True, k=5, resample=None, n_cores=0, use_alpha=False)[source]¶

    All-by-all NBLAST using R’s nat.nblast::nblast_allbyall.

    NBLAST is optimized for data in microns. Original nat function can be found here.

    Parameters:
    • x (NeuronList | nat.neurons) – (Tree)Neurons to blast. While not strictly necessary, data should be in microns.

    • k (int, optional) – Number of nearest neighbors to use for dotprops generation. Only relevant if input data is not already Dotprops.

    • resample (int | bool, optional) – Resampling during dotprops generation. A good value is 1 which means if data is in microns (which it should!) it will be resampled to 1 tangent vector per micron. Only relevant if input data is not already Dotprops.

    • normalized (bool, optional) – If True, matrix is normalized using z-score.

    • n_cores (int, optional) – Number of cores to use for nblasting. Default is os.cpu_count() - 2.

    • use_alpha (bool, optional) – Emphasizes neurons’ straight parts (backbone) over parts that have lots of branches.

    Returns:

    DataFrame containing the results.

    Return type:

    pandas.DataFrame

    Examples

    >>> import navis
    >>> from navis.interfaces import r
    >>> nl = navis.example_neurons()
    >>> # Blast against each other (note the division to get to microns)
    >>> scores = r.nblast_allbyall(nl / 1000)
    

    Back to top

    Source

    © Copyright 2018, Philipp Schlegel.
    Created using Sphinx 5.3.0.